Course Title	Course Code	Credit Hours
Multivariable Calculus and PDEs	MATH-203	3 – 0

Textbook:

• Dennis G. Zill and Michael Cullen, Differential Equations (3rd Edition) Reference Books:

- E. Kreyszig, Advanced Engineering Mathematics, 9th ed.
- Glyn James, Modern Engineering Mathematics.

Course Objective:

Develop proficiency in solving and applying multivariable calculus and partial differential equations to engineering problems.

Course Outline:

• Basic Concepts. Matrix Addition. Scalar Multiplication Matrix Multiplication • Linear Systems of Equations. Gauss Elimination.

• Solution of Linear Systems: Existence, Uniqueness, General Form • Inverse of a Matrix. Gauss-Jordan Elimination.

• Vector Spaces, Sub Spaces and Linear Transformations

• Linear dependence, linear independence, spanning set, basis • Eigenvalues and Eigenvectors

- Separable Variables.
- Homogeneous Equations.
- Exact Equations and Integrating Factors. Linear Equations.
- Equations of Bernoulli, Ricatti and Clairaut.
- Applications of Linear and Non-Linear First Order ODEs.
- Preliminary Theory.
- Initial and Boundary Value Problems.
- Linear Dependence and Linear Independence.
- Homogeneous Linear Equations with constant coefficients.
- Undetermined Coefficients. Variation of Parameters.
- Cauchy-Euler Equation.
- Laplace Transform and Inverse Transform. Unit step function, Dirac delta function
- Solution of 1st and higher order initial value problem using Laplace Transform.

Description	Percentage Weightage (%)
Assignments	05-10%
Quizzes	10-15%
Mid Semester Exams	30-40%
End Semester ASSESSMENTS Exam	40-50%